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ABSTRACT

This paper presents a preliminary study of the limits to solar flux intensity pre-

diction, and of whether the general lack of predictability in the solar flux arises

from the nonlinear chaotic nature of the Sun's physical activity. Statistical

analysis of a chaotic signal can extract only its most gross features, and de-

tailed physical models fail, since even the simplest equations of motion for a

nonlinear system can exhibit chaotic behavior.

A recent theory by Feigenbaum suggests that nonlinear systems that can be led

into chaotic behavior through a sequence of period-doubling bifurcations will

exhibit a universal behavior. As the control parameter is increased, the bifur-

cation points occur in such a way that _ proper ratio of these will approach the

universal Feigenbaum number. Experimental evidence supporting the appli.

cabUity of the Feigenbaum scenario to solar flux data is sparse. However, given

the hypothesis that the Sun's convection zones are similar to a Rayleigh-

Benard mechanism, we can learn a great deal from the remarkable agreement

observed between the prediction by theory (period doubling-- a universal route

to chaos) and the amplitude decrease of the signal's regular subharmonics.

This paper will show that period-doubling-type bifurcation is a possible route

to a chaotic pattern of solar flux that is distinguishable from the logarithm of

its power spectral density. This conclusion is the first positive step toward a

reformulation of solar flux by a nonlinear chaotic approach.

The ultimate goal of this research is to be able to predict an estimate of the

upper and lower bounds for solar flux within its predictable zones. Naturally,

it is an important task to identify the time horizons beyond which predictabil-

ity becomes incompatible with computability.
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1. INTRODUCTION

An accurate forecast of the intensity of solar flux is a prerequisite to accurate orbit and lifetime prediction for

spacecraft. The orbit lifetime is a function of the atmospheric drag force. The drag depends on the atmospheric

density, which is influenced by the solar flux. Solar ultraviolet and X-ray emissions that directly affect the Earth's

atmosphere are highly correlated with solar flux F10.7 observed on the surface of the Earth. Present density
models, such as Jacchia-Roberts (J-R), Harris-Priester (I-I-P), and mass spectrometer incoherent scatter (MSIS),

use F10.7 solar flux intensity as the indicator of the potential strength of ionizing radiation (References 1, 2, 3, and

4).

Current forecasting methods use statistical models to predict solar flux; for example, the Schatten method used

by Goddard Space Flight Center (GSFC), Marshall Space Flight Center 0VlSFC), and National Oceanic and At-

mospheric Administration (NOAA) (Reference 5). These models use traditional stochastic analysis (usually

based on structurally random data) to predict solar flux. However, as shown below, the patterns exh_ited by the
solar flux data indicate that the dynamical system creating the solar flux signal is inherently chaotic rather than

completely stochastic. Starting with the postulate that solar flux is a chaotic time series, a chaotic model is devel-

oped to reproduce essential features of the solar flux signal.

The solar flux signal is classified in Section 2 through analysis of a few basic descriptive properties. Section 3

presents a possflale model for the solar flux signal based upon recently developed nonlinear dynamics concepts of

period-doubling bifurcations and upon the results shown in References 5, 6, 7, and 8.

2. CLASSIFICATION OF SOLAR FLUX SIGNAL

Signals such as the solar flux have been categorized hisi'orically as either deterministic (meaning that a model of

the physical system can be constructed and used to predict the particular signal that will occur at a given time from

a signal(s) at a another time) or random (meaning that no model of the physical system can be constructed, but,

rather, that a method can be found to predict the probability that any particular signal will occur at a given time,

based on the history of the signal). These general categories can be divided further, as shown in Figure 1. For
deterministic signals, predictability is achieved by deriving for the model of the system equations of motion for the

signal. For random signals, a statistical analysis of the signal history must be performed and either an existing

statistical theory applied or a new statistical theory constructed.

l I

I

, I

Figure 1. Categories of Signals In Data Analysis
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Recent research on dynamic systems indicates that the cascade of categorizations shown in Figure 1 is incomplete

and that signals can exist for a system that has a detailed physical model (the system is deterministic), but that the

derived equations of motion cannot be used to predict the signal. Such signals and their systems of origin are
categorized as chaotic. While the lack of predictability in a deterministic system may seem inconsistent, mathe-

matical precision must be separated from the precision of physical observation. When a model is mathematically
deterministic, only one solution to its equations of motion exists for the given initial conditions (Reference 9). To

predict a signal to some specified accuracy, the observer must know the initial conditions of the system to some

related accuracy; however, one well-defined class of models has equations of motion for which variations beyond
the precision of the observer's knowledge of the initial conditions prevent predictions to a specified accuracy.

Terrestrial weather (to which solar activity is perfectly analogous) is an example of such a chaotic system.

Several statistical functions can be used to analyze the possNle extent of the chaotic nature of the solar flux signal.
Sections 2.1 and 2.2 present the application of these functions, and Section 2.3 presents some conclusions.

2.1 AUTOCOVARIANCE AND AUTOCORRELATION OFTHE SOLAR FLUX

The solar flux data shown in Figure 2 present an example of a statistical time series. The joint probability distn'bu-

tion for the solar flux can be visualized9 by plotting a scatter diagram using pairs of values (ft, ft+t) of a time

series, we can visualize the johat probability distribution P(fi, fj). For the solar flux data from Figure 2(a), we

obtain the scatter diagram in Figure 3 for lags of t = 0 and t = 27. By plotting ft + 27 versus ft (Reference 10),

this plot shows that the correlation between ft+27 and ft is positive.

Figure 4 shows the plots of autocovariances, autocorrelations, and autocorrelation errors for 600 shifts. These

plots were generated from more than 4,000 points of the solar flux time series shown in Figure 2(b).

Figures 5(a) and 5Co) show the plots of the power spectt'a for the solar flux data from Figures 2(a) and 2(19), respec-

tively. Figure 6 has the plot of the power spectra of data from Figure 2(a), scaled to have the same horizontal axis
as in Figure 5(b). This plot was scaled to show a global symmetry of the power spectra under time extension.

2.2 FOURIER FILTERING

In the low-pass Fourier filter method, we Fourier-transform the signal and then take the inverse Fourier-

transform, omitting frequencies greater than a specified limit. Using this technique, we can determine what fre-

quencies to disregard for construction of a simple iterative map. Figure 7 contains the solar flux time series for

the period November 1977 to November 1980, and a plot for 27-point rectangular averaging. Figure 8 has plots

from 7- and 27-point triangular averaging. Figure 9 shows a plot of Fourier-filtered solar flux time series with 20
and 50 harmonics retained.

2.3 CONCLUSIONS FROM STATISTICAL ANALYSIS

Looking at the solar flux time series shown in Figure 2(a), it is difficult to see any pattern or structure in the solar
flux data. However, the scatter diagram of Figure 3(b) shows regions where points are clustered together. This

clustering is an indication of correlation between ft and ft+27. Figure 4 has a plot of the autocovariance and

autocorrelation function with its standard error, and shows the small peaks that are separated by exactly 27-day
solar rotations. Additionally, we can see that every 183 days, an anomaly occurs in the autocorrelation function.

This anomaly is probably due to a change of the magnetic latitude of the Earth every 6 months

(aA.year _ 183 days). To determine if this is a numerical or computational artifact, we also have plotted the
standard error of autocorrelation function. At the particular location of these anomalies, no considerable change

in standard error of autocorrelation function was observed; therefore, these anomalies are dynamical in charac-

ter and are not produced by computational artifacts. The autocorrelation plots show that the autocorrelation of

the solar flux decreases with increasing time shifts, a characteristic common to chaotic time series.

_, c_
Comparing Figure 8_1_)to Figure 9(a), and Figure 8(b) to Figure 9J_, we can see that 27-point triangular averag-

ing is equivalent to retaining 20 harmonics in a Fourier low-pass filtered solar flux signal; 7-point triangular

averaging is equivalent to retaining 50 harmonics. This information is useful for constructing an iterative
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manifold (see Section 3) that can reproduce q_r time series. Figure 10 shows the Fourier spectrum of the auto-
correlation of the time series shown in Figure _g(a), which clearly shows the particular patterns such as the 27-day

periodicity, the 183-day anomaly, and other periodic anomalies.

xl0.1_
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-5.00

Figure 10.

1.00 2.00 3.00 4.00 5.00

Fourier-Transform of the Autocorrela-
tion of the Solar Flux Time Series From
Figure 7(a), Showing the Periodicity
Pattern In the Autocorrelatlon Function

Figure 6 shows the plot of a power spectrum fora timespan that was scaled for another time space. This plot was
done to observe the global symmetry of the power spe£tra under time extension (a fractal characteristic). Fractal
structures are common to chaotic time series.

Figures 5(a) and 5(b) show the plots of the power spectra for the solar flux data presented in Figures 2(a) and 20o),
respectively. Many obvious patterns are evident in the power spectra of Figure 5(a); for example, we can clearly
see the peaks for 27-day solar rotation periodicity. One interesting feature of this figure is that, starting from the
midpoint of the spectra (the "glitch" close to the 480 Fourier component), we can f'md the f'trst largest glitch to the
left at about the 295 Fourier component. If we divide the distance from 295 to 480 by 2, we see the next-largest
downward glitch near the 390 Fourier component. Furthermore, if we divide the distance from the 295 glitch to
the 390 glitch, we will once again find the next-largest glitch. The regular appearance of these glitches demon-
stratey_uccessive frequency halving or period doubling for the solar flux signal. In laboratory experiments, period
doubling was observed in several chaotic systems (Reference 11). As with the solar flux signal, noise limited the
number of observed period doublings to only a few. Based upon laboratory experiments, we conclude that period
doubling is a possl'ble route to chaos in the solar flux signal. (Currently, three established routes to chaos have
been found: the Grossmann-Feigenbaum period-doubling route, the Manneville-Pomeau route, and the Ruelle-

Takens-Newhouse route.)

3. INTRODUCTION TO CHAOS IN DYNAMICAL SYSTEMS

This section presents some examples of the various states of chaos.

3.1 EXAMPLES OF CHAOTIC SYSTEMS

Two examples are introduced here. The first one (Rayleigh-Benard) is very similar to the dynamical behavior of
the Sun. The second one (dripping faucet) is a model system for studying the strange attractor of solar flux; be-
cause it exh_its period doubling, it is a good candidate for studying solar flux.

Most scientists know the dynamical behavior of systems in which systems eventually settle into either periodic

motion (limit cycle) or into a steady state (system ceases its motion). However, another important class is called
the chaotic system. This system cannot be represented using standard analytical functions (Reference 12).
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Our first example consid ers the dripping faucet model (see Figures 11, 12, 13, and 14). In this model, water drops
fall from the faucet at a steady rate, the drops pass a detector, and the pattern is seen to be periodic. When the

rate of flow is small, the time difference between the drops (At - ti+, - tO is constant. As the rate isincreased,

two drops fall together over a longer period. Therefore, two periods are associated with this system: one is short,

Ats, and the other is long, Atu • The sequence of time intervals, then, is ...Ats, AtL, Ats, AtL. This interval is

called period-two sequence. Longer periodic sequences are poss_le at a specific flow rate. This sequence can
become irregular and therefore chaotic (Reference 13).

Our second example considers the experiment of IalDchaber and Maurer (Reference 11). In this experiment, a
liquid contained in a small box is heated from the bottom. The important points are as follows:

The experiment has a controllable parameter, the Rayleigh number, which is proportional to the
temperature difference between the bottom and the top of the cell. The Rayleigh number describes
the stability of a convective flow.

The system is dissipative. Whenever the Rayleigh number is increased, the transients begin to die
out. For small temperature gradients, heat flows across the cell, but the liquid is static. At a critical
temperature, a convective flow sets in. The hot liquid rises in the middle, the cool liquid flows down
at the sides, and the two convective rolls appear (see Figure 15).

As the temperature difference is increased further, the roils become unstable in a very specific way--a wave starts
running along the roll, as shown in Figure 16(a). As the warm liquid rises on one side of the roll and cool liquid
descends down the other side, the position and the sideways velocity of.the ridge can be measured with a ther-
mometer, as shown in Figure 16(b). A sinusoid is then observed, as shown in Figure 17(a); two other ways of
displaying the measurement are suggested by the graphs in Figure 17(b).

The temperature difference is now increased. After the stabilization of the phase-space trajectory, a new wave is
observed superimposed on the original sinusoidal instability. The three ways of looking at it (real time, phase-
space, and frequency spectrum) are illustrated in Figure 18.

At first it appears that To is the periodicity; however, a closer look reveals that the phase-space trajectory misses
the starting point atTo and doses on itself only after 2"1"o.A new band has appeared at half the original frequency
on the frequency spectrum. Its amplitude is small because the phase-space trajectory is still approximately a
circle with periodicity To.

As the temperature increases slightly, a fascinating thing happens. The phase-space trajectory undergoes the
very free splitting seen in Figure 19(a).

Three scales are involved here: casual observation reveals a circle with period To; closer scrutiny shows _ with
period 2To; and very close examination shows that the trajectory closes on itself only after 4To. The same infor-
mation can be read off the frequency spectrum; the dominant frequency is fo (the circle), then fo/2, and finally,

much weaker fo/4 and 3fo/4. "

The experiment now becomes very difficult. A tiny increase in the temperature gradient causes the phase-space
trajectory to split on an even finer scale, with the periodicity 23To. If the noise were not too loud to continue, it
would be expected that these splittings would continue, yielding a trajectory with finer and finer detail and the
frequency spectrum seen in Figure 19(b) with families of weaker frequency components. For a critical value of

the Rayleigh number, the periodicity of the system is 2"T0, and the convective roils have become turbulent. The

ripples that are running along them show no periodicity, and the spectrum of idealized noise-free experiment
contains infinitely many subharmonics. If increases are made to the temperature gradient beyond this critical
value, further surprises occur. The following section provides a numerical simulation of a simple nonlinear oscil-
lator to provide ari understanding of why the phase-space trajectory splits in this peculiar fashion.

In an externally driven pendulum, one can see that for a wide range of initial points, the phase-space trajectory
converges to a limit cycle (trajectory loops onto itself), which for some k -- ko is as shown in Figure 20(a). If not
for the external driving force, the oscillator would have simply come to a stop; as it is, it is executing a motion
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forced on it externally, independent of the initial displacement and velocity. It is easy to visualize this nonlinear
pendulum executing little backward jerks as it swings back and forth. Starting at the point marked 1, the pendu-
lum returns to it after the unit period To. However, as the friction is decreased, the same phenomenon is ob-
served as in the turbulence experiment where the limit cycle undergoes a series of period doubling as illustrated

in Figure 20(b).

The trajectory continues to nearly miss the starting point, until it hits after 2trI'o . The phase-space trajectory is
getting increasingly hard to draw. However, the sequence of points 1, 2, ..., 2n, which corresponds to the state of
the oscillator at times To, 2To ..... 2nTo, sits in a small region of the phase space, and it can be enlarged for a closer
look, as seen in Figure 21(a). Globally, the phase-space trajectories of the turbulence experiment and of the
nonlinear oscillator numerical experiment look very different. However, the sequence of near misses is local and
looks roughly the same for both systems, as illustrated in Figure 21(b). This method of reducing the dimension-
ality of the phase-space is often called a Poincar_ map. Instead of starting at the entire phase-space trajectory, we
fred its points of intersection with a given surface• The Poincar6 map contains all the needed information and
enabIes the scientist to read off where an instability occurs and how large it is. By continuously varying the nonlin-

earity parameter (such as friction and Rayleigh number) and plotting the location of the hatersection points (in the
present case, the Poincar6 surface is a line), the result is the bifurcation tree seen in Figure 22(b). A computer-
generated example of a real bifurcation tree for a simple chaotic system is shown in Figure 22(a). The phase-
space trajectories that have been drawn are localized so the tree has a finite span. Bifurcation occurs
simultaneously because it is cutting a single trajectory; when it spats, it does so everywhere along its length. Finer
and finer scales characterize both the branch separations and the branch lengths.

Feigenbaum's discovery consists of the following quantitative observations:

• The parameter convergence is universal (independent of the particular physical system), as shown in
Figure 22(c).

• The relative scale of successive branch spl_tings is universal (independent of the particular physical

system), as seen in Figure 22(d).

The beauty of this discovery is that if turbulence (chaos) is arrived at through an infmite sequence of bifurcations,
the following two predictions result:

6 -- Lira A_ == 4.6692 a = Lim e_ == 2.5029
t---_-ge Ai+ 1 i--_htrgc El+ 1

3.2 SENSITIVITY TO INITIAL CONDITIONS (ATTRACTORS)

Here we intend to show that a time horizon exists above which predictions are impossNle. To demonstrate this,

we use the dripping faucet attractor (the I-I6non attractor), which contains multiple periodicities in its dynamics.

One of the most important concepts in dynamics of dissipative systems is the presence of attracting sets, or attrac-
tors, in phase space. These are bounded sets where regions of initial conditions asymptote as time increases; that
is, dynamical systems that are conservative do not have attractors. Two examples of attractors are shown in Fig-
ure 23 (Reference 14).

NOTE: The dimensionality of a point attractor is 0 and the dimensionality of a limit-cycle attractor is 1 (it is a
line rather than a point). In general, the dimension of an attractor can be a noninteger fraction or a
fractal attractor; such attractors are called strange attractors. An example of a strange attractor is

shown in Figure 24 and is generated from the H6non map (104 successive iterations).

x,+1 -- A-_ + By.

Yn+ t = x=

After a small number Of iterates of two trajectories, one computed using single precision, the other computed
using double precision, and both originating from the same initial condition, they are still far apart. This approach

was recently proposed by C. Grebogi.
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(b)

(a)

(a) The Phase-Space Trajectory Converges tO a limit Cycle

(b) In a Pendulum. Starting at the Point Ma_ed 1, thll Pendulum

Ralums lO it Alter the Unit Period To. However as the tricilon

is 6_cl'llasea, 1ha Same Phenomenon Is Observed aS in the

Tumu!ence E.xperimem Where the Limit Cycle Unoergoas a

Series o( Perk)d.Doublings

Figure 20. Phase-Space Phenomena

Pothcar="surface
o_ht--cy_ -i"---'"-F'_

(a)

Poincax_ map

w _

(b) _F

(a) The Traiecloty Continues to Nearly Miss the Starting Point UnlJl itHits Allar 2 n TO

Here We Have Two Different Dynamical Systems: a Pendulum and a Rayieigh-

Bemlu¢l System, bul They are BoUt Le.d to Chaotic Behavior Through the Same

Universal Roula (Period.Doublings). The Poinciire Sudace Reveals This

UnivaC.

(b) The Se<3ments of Near MiSSes is Local and LooKs Roughly the Same |or Both the

Pendulum Sy_em and the Rayleigh-Bemard System.

Figure 21. Comparison of Trajectory Systems

(a)

,j

C .-,, finite

,f

+ ! ,>
, I -,<"

I ' I, ,t.. ;.J'c"

(c) f_

(a) Compuiar-Genarlted version of a Reid Bifurcation for a Chaotic System.

I'b) Location of Interse<;Iion Poims in the Present Mechanisms: the Poincetii Surface is a

line and the Resu.'l ts ii B_'urc;dion Tree.

(c) The Parameter Convergence is Unlvel_al (independent of the Particular Physical System).

(d) The Relative Scate ol Succ_ssNe Branch Spliltlngs is Univamal (Incie0endan! of the

Pancular PhysiCal SystemJ.

Figure 22. Examples of Bifurcation Trees
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(a) (b)

{a) Point At'0"actor:A Damped Harmonic Oscillator-model of a Pendulum.
(b) Limit-cycle AtIractor: A Van der Pol Oscillator-model of a circuit Oscillator.

÷

Figure 23. Examples of Attractors

XI

5.,
• / _

/ = 39 _/,_z,
-_ "" 7 ._'_"

Figure 24. Example of a Strange Attractor

Attractors that can show chaotic behavior represent exponential sensitivity to initial conditions. Consider two

initial conditions lf_>o and [f_>o = ft>o + [E>o. The dynamical evolution gives a final state

]f_ > t and If2 > t, as shown in Figure 25.

.,-4=- _2 >1

P'>o "_" -'_" 1¢>t __..

J =

Figure 25. Exponential Evolution of Two
Near Orbits in Phase Space

After time t, the distance between the two orbits is IE>t = If2>t - If_>,. In the limit IE>o--* o and

t _ large, orbits remain bounded and the difference between the solutions I e > = evolve exponentially for a

given direction of IE>o. Thatis, I >'1 -e a, 2>0. Therefore, the system is very sensitive to initial condi-

tions and is chaotic. This means that small errors in the prediction can evolve rapidly with time. Thus, there is a

time horizon at which noise and computer roundoff can totally change the dynamics. To illustrate this computa-

tional limit, a computer experiment is performed on a simple attractor of Figure 24, with A = 1.4 and B = 0.3.

As shown in Figure 24, we have generated 34 to 40 iterates of an orbit starting from an identical initial condition

[f_ > o = 0, lf2 > o = 0. The computations are identical except that one uses single precision and the other

double precision. Single-precision round-off error is 10 -14 . Single precision is indicated by squares and double

precision by circles. For every iterate connected with a vector, we see that at the 40th iteration, the magnitude of

this vector is as large as the vadables themselves. Consequently, if using a computer that has 10-14 round-off

error, prediction after the 40th iteration is nothing but a guess if the dynamics we are working with are indeed
chaotic and have a HEnon attractor. This was just an example. In practice, the chaotic attractor of a solar flux

time series should be identified before any meaningful prediction procedure is implemented, which is the goal of

such an approach to solar flux prediction.

6130-12



Returning to the Hfnon map example, we see that after the first iterate, [ c > t and [e > o are different by an

order of 10 -14 (round off). If in the next iteration, the error doubles (e ln2t -- 2t), then the I• >, and I• > . are

different by an order of attractor size in t - 45 (2t10 -t4 -- 1). That is, if the error doubles, it is irnposs_le to

improve prediction. If we want to predict the evolution past t - 45 to t -- 90, which is twice as long a predic-

tion; then we should have an accuracy of 10-28 , which is 14 orders of magnitude more accurate. Therefore, im-

proving prediction by a factor of two is impossNle.

In other words, structural stability (Topological Orbital Equivalence [TOE]) breaks over a time horizon, making

prediction imposs_le. Therefore, structural stability and computability are inherently incompatible. This is pre-

cisely why weather prediction over a time horizon is impossNle. Lorenz' conclusion for weather-generating
mechanisms was that thermally driven convections could make the atmosphere chaotic.

Now, returning to our problem, we have many reasons to believe that multiple interactions in the Sun introduce
nuclear, chemical, electrodynamic, hydrodynamic, and other nonlinearities. It is easy to visualize chaotic behav-
ior in solar flux because the Sun is like a rotating fluid that introduces turbulence, and its sunspots are similar to

convection rolls. These behaviors introduce chaos just as does the Rayleigh-Benard mechanism. Furthermore,

all atmospheres are really chaotic--even those ionized gases in solar atmosphere that chaotically modulate solar
radio emission.

4. CONCLUSIONS

In May of 1990, we postulated that solar flux is a chaotic time series. This postulation was apparent from many

physical features of the Sun. For example, the Sun is a retating fluid that introduces turbulence, and most of the
interactions, whether chemical, nuclear, or other, are nonlinear. We have also argued that the pattern in the

logarithm of the power spectrum and the autocorrelation function is a concrete example that solar flux is a

pattern-structured, time series. Therefore, an approach to study solar flux should be through nonlinear chaotic

dynamics.

We have further claimed that a time horizon exists above which predictions are computationally impossible. To

demonstrate this claim, we used the dripping faucet attractor, which roughly resembles the multiple periodicities

observed in the dynamics of the solar flux. We also suggested that the Hdnon-type attractors provide good candi-

dates for study, although in the absence of a detailed demonstration that strange attractors or ensembles of

strange attractors are really Hdnon types, this theory remains in the realm of speculation.

Convection rolls were also introduced as models of sunspots that are products of nonlinear interaction (like soli-

tons). These convection rolls could be produced in the ionized gases of solar atmosphere, further modulating

(chaotically) the solar flux signal.

We also discovered evidence of a period-doubling type of route to chaos in the behavior of solar flux. In this case,

we observed less power at frequencies that follow the well-known period-doubling bifurcations. This was further

recognized as a new form of order that could be a new route to chaos. We also found evidence of fractal (self-simi-

larity invariance, under contraction and dilation) structure in solar flux that deserves a separate investigation (see

Figure 26).
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